

Characterization of Miller Run and Conceptual Plan for Watershed Restoration

UNIV 298 Spring 2009

Miller Run: An Overview

+

Miller Run Statistics

- 80% of Miller Run is owned by Bucknell.
- The runoff from the new housing developments also contribute to the stream.
- Length of Stream: 2,000m
- Percent Forest: 13.1% (The Grove and the Golf Course)
- Percent Urban: 37.5% (Buildings and Roads)
- **Channelized: 75-100%**
- <u>50% Rip-rap</u>

Source: streamstats.usgs.gov (2009)

Introduction to the Presentation

- Characterization of Miller Run
 - The impairment of the stream:
 - The Channel
 - The Water
- Conceptual Plan
 - Our Proposed Solutions
 - The Costs of Our Proposed Solutions
- Conclusions
 - What Miller Run Could Be

Photo Courtesy of: http://www.facstaff.bucknell.edu

Project Goals

- Flood Control
 - Storm Water Management
 - Retention
 - Infiltration
- Aesthetic Appeal
 - Native Species
 - Riparian Health
 - Recreation
- Improve Ecological Health
 - Year-Round Flow
 - Sewage Recycling
 - Habitat- Diversity
 - Water Quality
 - Target Species
- Channel Sustainability
 - Space for Migration
 - Structure Renewal
- Environmental Education
 - Watershed Management
 - Learning and Teaching

Miller Run Today

What Miller Run Could Be Photo Taken by Dina El-Mogazi at Wellesley College

+ The Characterization of Miller Run

Miller Run Put Into Perspective

Miller Run Longitudinal Profile

Distance from Source (m)

Obstructions

+ Hydrologic Issues

- Portions of Miller Run frequently go dry
- Water quickly enters and exits the system
- High sediment content: hinders life, destroys restoration structures

Frequent Periods of Zero Flow

- Established gauges upstream and downstream to measure the height of the water
- Used rating curve and Manning Equation to calculate discharge (flow of water over time)

Time

February Snow Melt Hydrograph

Feb 18 Snowmelt and Rain Event Hydrograph

Upstream Discharge Lag Time For Small Rainfall Event

Downstream Discharge Lag Time For Small Rainfall Event

Upstream Discharge Lag Time For Large Rainfall Event

Downstream Discharge Lag Time For Large Rainfall Event

Sediment

÷,

Concentrations In Parts Per Million

Water Quality

+ Water Chemistry

Tests Used:

- Sondes were used to automatically record stream conditions such as temperature, pH, specific conductivity, and dissolved oxygen.
- Water samples were also taken manually during normal flow and high flow events, and analyzed for chemical composition.
- Two sites were sampled for each reading; MR-1 was upstream at the Art Barn crossing and MR-2 was downstream at Bucknell Hall.

Baseline Ion Concentrations

Upstream Site February 17, 2009

	Concentration
Dissolved Solid	(mg/L)
Ammonium	<10
Sulfate	34
Chloride	81.7
Nitrate	1.9
Phosphorous	< 0.1
Sodium	32.2
Potassium	3.2
Magnesium	9.7
Calcium	57.9
Manganese	0.05
Iron	0.2
Lead	< 0.01
Zinc	< 0.02
Chromium	< 0.004
Copper	< 0.04
Nickel	< 0.005
Cadmium	< 0.001
Arsenic	< 0.005

Downstream Site- February 17, 2009

	Concentration
Dissolved Solid	(mg/L)
Ammonium	<10
Sulfate	48
Chloride	47.9
Nitrate	1.98
Phosphorous	< 0.1
Sodium	21.9
Potassium	2.8
Magnesium	9.9
Calcium	53.5
Manganese	< 0.03
Iron	0.23
Lead	< 0.01
Zinc	< 0.02
Chromium	< 0.004
Copper	< 0.04
Nickel	< 0.005
Cadmium	< 0.001
Arsenic	< 0.005
Sodium, Chloride, and Potassium Fluctuations (February 7-9, 2009 Snowme

Negative Impacts: Surface runoff and interflow carry high ion loads into the waterway from road salts and fertilizers.

Sulfate and Nitrate Fluctuations (Februar 7-9, 2009 Snowmelt)

Negative Impacts:

•Initial decrease is due to simple dilution.

•Increase is due to an underground contaminant located near the upstream siteprobably fertilizer accumulation or a broken sewage line.

Ammonium and Phosphorous Fluctuatior (February 7-9, 2009 Snowmelt) [NH4+]

Delayed peak reveals an underground source of contamination near the upstream site.

Dissolved Oxygen- Baseline and Apr 3, 2009 Rain event Comparisons

MR-1: Art Barn MR-2: Gerhard Field House- Rt. 15 MR-3: KLARC Building MR-4: Loomis St./Art Building

Habitat Assessment

÷

Site	MR-1 (Art Barn)	MR-2 (Gerhard	MR-3 (Kenneth G.	MR-4 (L <mark>o</mark> omis Street –	
		Fieldhouse - U.S. 15)	Langone Athletics and	Art <mark>B</mark> uilding)	
			Recreation Center)		
Instream Cover(fish)	6 (Marginal)	8 (Marginal)	10 (Marginal)	7 (Marginal)	
Epifaunal Substrate	8 (Marginal)	12 (Suboptimal)	7 (Marginal)	8 (Marginal)	
Embeddedness	18 (Optimal)	3 (Poor)	3 (Poor)	3 (Poor)	
Velocity/Depth Regimes	7 (Marginal)	7 (Marginal)	9 (Marginal)	8 (Marginal)	
Channel Alteration	14 (Suboptimal)	3 (Poor)	1 (Poor)	3 (Poor)	
Sediment Deposition	13 (Suboptimal)	7 (Marginal)	10 (Marginal)	8 (Marginal)	
Frequency of Riffles	8 (Marginal)	12 (Suboptimal)	10 (Marginal)	3 (Poor)	
Channel Flow Status	16 (Optimal)	14 (Suboptimal)	14 (Suboptimal)	7 (Marginal)	
Condition of Banks	10 (Marginal)	14 (Suboptimal)	11 (Suboptimal)	7 (Marginal)	
Bank Vegetative Protection	9 (Marginal)	5 (Poor)	1 (Poor)	1 (Poor)	
Grazing or Other Disruptive Pressure	10 (Marginal)	6 (Marginal)	3(Poor)	3 (Poor)	
Riparian Vegetative Zone Width	3 (Poor)	4 (Poor)	1 (Poor)	1 (Poor)	
Total	122	95	80	59	
Habitat Assessment	Marginal	Marginal	Marginal	Poor	

Reasons for Biotic Sampling:

- Aquatic macroinvertebrates are highly variable in their sensitivity to water pollution. These differences can be used by biologists to evaluate the overall health of a stream.
- The link between fish species composition and water quality provides an important assessment of stream ecosystem health.
- Algae analyses allow us to determine gain information about the biomass of algae, which is related to water chemistry and conditions of riparian vegetation.

+ Macroinvertebrates

+ Macroinvertebrate Results

IBI Score

- IBI Scores are used by the DEP to measure the degree of a stream's impairment.
- Miller Run's IBI score is significantly lower than the impairment threshold.
- The downstream samples showed much lower biodiversity and fewer pollution-sensitive species.

IBI Score of Miller Run Compared to Impairment Le**vel**

Sample Site: Upstream→Downstream

Algae Sampling

The data show a general trend of increasing algal biomass downstream, which may indicate increasing nutrient or light availability along Miller Run.

Alternatively, lower algal biomass in upstream reaches of Miller Run might be caused by grazing by benthic macroinvertebrates or herbivorous fishes.

Relative Concentrations of Chlorophyl *a*

Electro-Fishing

to

Electro-Fishing

Twenty-three fish were collected at the two sample sites , with six species represented

There was a >88% decrease in fish numbers at the downstream sampling site, and a decrease in total species diversity by >83%.

We expected that there would be more species near Bull Run, due to colonization.

This indicates a substantial difference in the quality of habitat available at downstream versus upstream locations.

Family	Genus	Species	Adult	Juvenile	Tot
					al
Centrarchidae	Lepomis	macrochirus	1	3	4
		gibbosus	1	0	1
Cyprinidae	Campostoma	anomalum	1	0	1
	Semotilus	atromaculatus	11	0	11
	Exoglossum	maxillingua	2	0	2
	Luxilis	cornutus	1	0	1
Total			17	3	20

Upstream Site

Downstream Site

Family	Genus	Species	Adult	Juvenile	Total
Cyprinidae	Semotilus	atromaculatus	3	0	3
Total			3	0	3

Conceptual Plan For Miller Run

Proposed Solutions for the Lasting Health of Miller Run

Goals & Proposed Solutions For Miller Run

Flood control – Stormwater management, Water retention, low flow

augmentation, out-of-channel solutions

Aesthetic appeal – Appropriate stream landscaping,

recreational (walking/biking) & meditation space, Bucknell as an example, community green space

Environmental education - Watershed

management, "outdoor classroom", research opportunities

Ecological health and sustainability – Maintain year-round flow, provide habitat for target

species, encourage native species growth

Channel sustainability - Space for

migration/channel evolution, structure/obstruction removal or replacement, bank stability measures, floodplain reconnection

Bucknell is what we call an impermeable jungle.

The campus is covered with ugly asphalt walkways and parking lots and large buildings which do not have efficient storm water management structures.

This needs to change to help replenish the ground water and reduce runoff.

•Buildings and storm drains feed directly into Miller Run.

•Large amount of storm water produced.

•Explains why downstream peaks before upstream.

•Structures that could help cut down on surplus of water.

•Porous Pavements

 Asphalt, concrete, and block pavers

•Infiltration trenches

•Rain Gardens

Permeable Pavements Parking lots: 175,111 •Pavements can be placed on slopes no greater than 5-20 degrees, which is a great deal of campus.

•Greatly reduce runoff.

 To keep pores clean walkways should be maintained.

•Some pavements more pleasing to the eye than others, but all are better than the ugly asphalt now.

> Total surface area of campus walkways plus some campus parking lots : around 654,836 square feet.

Walkways: 479,725

+ Stepped Infiltration Trenches

Possible Sites

Roof Runoff feeding into Infiltration Trenches

+Possible Sites

Flood Control

- Two wetland areas
 - Sojka Lawn
 - Mod Field area
- Floodplain reconnection
- Stream corridor/vegetation
 - Biodegradable fabrics
 - Plant natives

Reach 2A-3

Aesthetic Appeal

- Rip-rap/obstructions
- Expand natural areas
- Restoring and fostering native habitats
- Recreation & meditation space
- Bucknell as an example

* Environmental Education

- "outdoor classrooms"
 - Biology
 - Engineering
 - Geology
 - Environmental Studies
 - The Arts
- Bike/walking pathincrease community interaction with stream/environment

University of Delaware

+ Ecological Health and Sustainability

- Widening of stream corridor allows for formation of diverse habitatboth biota (fish, etc.)& abiota
- Year-round stream flow (low flow augmentation)

www.creativehabitatcorp.com/stream.html

Channel Sustainability

Space for channel evolution and migration
Removal/replacement of structures
Floodplain reconnection

http://www.fws.gov/midwest/Fisheries/streamcrossings/ReplacementStruct

http://www.boquetriver.org/newswillsborocrib.ht

+ Reach 2b

+ Economic Feasibility of Restoration

Out of Stream Structures

COST ANALYSIS								
Storm Water Management								
Construction:								
R	ain Gardens	\$	6		1000	\$	6,000	
In	filtration Trenches			7	30,000		210,000	
P	ermeable Pavement			6	175,111		1,050,866	
G	Grand Total:	\$	19			\$	1,266,666	

In Stream Structures

COST ANALYSIS									
Channel Restoration									
Demolition:		Unit	t Cost	:	Units est.	Тс	tal Cost		
	Rip Rap	\$	42		2,400	\$	100,440		
	Parking Surfaces:		0		2,250		923		
	Concrete Walls:		150		300		45,000		
	Culverts and Pipes:		290		20		5,791		
	Sub Totals:	\$	482			\$	152,154		
Construction:									
	Log Cribbing	\$	286		315	\$	90,090		
	Culvert			289.5	2		579		
	Wetlands: Sojka			150000	1		75,000		
	Wetlands: Mods			57100	1		57,100		
	Sub Totals:	\$207,676			\$	222,769			
	Grand Total:	\$20	8,157			\$	374,923		

Total Project

COST ANALYSIS							
Channel Restoratio	n						
Demolition:		Uni	t Cost	Units est.	То	tal Cost	
	Sub Totals:	\$	482		\$	152,154	
Construction:							
	Sub Totals:	\$20	07,676		\$	222,769	
	Grand Total:	\$20	8,157		\$	374,923	
Storm Water Manag	jement						
Construction:							
	Grand Total:	\$	19		\$	1,266,666	
Misc. Inputs							
	Permits					8,500	
	Legal Council					4,250.00	
	BU Facility Cost				1	7,000.00	
	Sub Totals:				\$	1,671,339	
	Escalation & Contingency				5	50,140.17	
	Grand Total:				\$	1,721,479	
+ Non-Scientific Benefits

- The restoration of Miller Run dovetails with both campus and community initiatives
 - Campus Master Plan
 - Creation of green space and bike paths
- Offers educational facilities to students and members of the Lewisburg community
- Sets Bucknell apart from peer schools
- Unique and exciting atmosphere to both live and work